Overcoming Chemoresistance in Cancer via Combined MicroRNA Therapeutics with Anticancer Drugs Using Multifunctional Magnetic Core–Shell Nanoparticles

Perry T. Yin,† Thanapat Pongkulapa,‡ Hyeon-Yeol Cho,‡ Jiyou Han,∥ Nicholas J. Pasquale,‡ Hudifah Rabie,‡ Jong-Hoon Kim,∥ Jeong-Woo Choi,§ and Ki-Bum Lee*†

†Department of Biomedical Engineering and ‡Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
§Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
∥Department of Biological Sciences, Laboratory of Stem Cell Research and Tissue Regeneration, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
#College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea

ABSTRACT: In this study, we report the use of a multifunctional magnetic core–shell nanoparticle (MCNP), composed of a highly magnetic zinc-doped iron oxide (ZnFe₂O₄) core nanoparticle and a biocompatible mesoporous silica (mSi) shell, for the simultaneous delivery of let-7a microRNA (miRNA) and anticancer drugs (e.g., doxorubicin) to overcome chemoresistance in breast cancer. Owing to the ability of let-7a to repress DNA repair mechanisms (e.g., BRCA1 and BRCA2) and downregulate drug efflux pumps (e.g., ABCG2), delivery of let-7a could sensitize chemoresistant breast cancer cells (MDA-MB-231) to subsequent doxorubicin chemotherapy both in vitro and in vivo. Moreover, the multifunctionality of our MCNPs allows for the monitoring of in vivo delivery via magnetic resonance imaging. In short, we have developed a multifunctional MCNP-based therapeutic approach to provide an attractive method with which to enhance our ability not only to deliver combined miRNA therapeutics with small-molecule drugs in both selective and effective manner but also to sensitize cancer cells for the enhanced treatment via the combination of miRNA replacement therapy using a single nanoplatform.

KEYWORDS: magnetic core–shell nanoparticles, microRNA therapeutics, chemoresistance, targeted delivery, combination cancer therapy

INTRODUCTION

Cancer is a complex disease that is characterized by the existence of a multitude of genetic and epigenetic alterations that promote cellular abnormalities such as aggressive growth and resistance to apoptosis.¹ Breast cancer, which is the most frequently diagnosed cancer in women in the United States, is typically divided into histological subtypes based on the expression of specific receptors such as the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor (HER2) or the absence of all three (e.g., triple-negative breast cancer).²,³

The conventional treatment for breast cancer depends on the subtype but typically involves surgical resection of the tumor followed by adjuvant radiotherapy and chemotherapy. For example, the most frequently used chemotherapeutic regimens for breast cancers are based on anthracyclines [doxorubicin (DOX), daunomycin, and epirubicin]⁴ and taxanes [paclitaxel and docetaxel].⁵,⁶ However, current chemotherapeutic strategies to treat breast cancers often cannot account for the vast degree of heterogeneity that exists within the tumor. Moreover, breast cancer cells often acquire chemoresistance, failing to eradicate the entire tumor and recurrence, especially in patients with triple-negative breast cancer. One common way by which cancer acquires drug resistance is the overexpression of drug transporters [e.g., adenosine triphosphate-binding cassette (ABC) transporters]. Other mechanisms through which cancer develops chemoresistance include aberrations of DNA damage response
Therefore, miRNA replacement therapy is hypothesized to be a tumor suppressor that inhibits cancer progression of cancer.9,13 For example, (ZnFe2O4) core and a biocompatible mesoporous silica (mSi) shell nanoparticles (MCNPs) would be a powerful approach. miRNAs are short (20–22 nucleotides) noncoding RNA molecules that bind to messenger RNAs (mRNAs) in a completely or partially complementary fashion, leading to the degradation or translational inhibition of the mRNA targets.8 miRNAs have already been known to play a significant role in developmental biology as well as in stem cell biology.11,12 A growing body of evidence suggests that mutations in miRNA can cause the development and/or progression of cancer.8,13 For example, let-7a miRNA (let-7a), which is reduced in brain, breast, lung, and ovarian cancers, is hypothesized to be a tumor suppressor that inhibits cancer growth by reducing oncogene expression (e.g., RAS and HMGA2).14 Therefore, miRNA replacement therapy is emerging as a promising treatment approach for cancers such as those of the breast. Although miRNA-based therapies have great clinical potential, possible synergies with conventional chemotherapeutic agents remain poorly explored. Furthermore, their wide applications are significantly hampered by the lack of appropriate delivery platforms and corresponding molecular imaging methods.

In this paper, we demonstrate the use of a multifunctional MCNP, composed of a highly magnetic zinc-doped iron oxide (ZnFe2O4) core and a biocompatible mesoporous silica (mSi) shell, as a vehicle for the simultaneous delivery of let-7a with the anticancer drug (DOX) to breast cancer cells, thereby effectively overcoming chemoresistance (Scheme 1). The multifunctionality of our MCNPs allows for the conjugation of tumor-targeting/penetrating peptides, such as iRGD (internalizing RGD, CRGDKPGDC), as well as the ability to monitor drug delivery via fluorescence and magnetic resonance imaging (MRI). Moreover, although let-7a has primarily been shown to inhibit the malignant growth of cancer cells by targeting RAS and HMGA2, it is also known to have functions in DNA repair (e.g., BRCA1 and BRCA2), cell cycle, and regulate multidrug resistance genes/drug efflux pumps (e.g., ABCG2).15 As such, using a triple-negative breast cancer cell line (e.g., MDA-MB-231) as a model system, we hypothesized that the codelivery of let-7a as a replacement therapy could sensitize these breast cancer cells to subsequent DNA-damaging agents such as DOX. Collectively, our developed MCNP-based therapeutic approach can provide an attractive means with which to enhance our ability to not only deliver and monitor multiple therapeutics but also sensitize cancer cells for enhanced treatment via combinatorial miRNA replacement therapy using a single platform.

EXPERIMENTAL SECTION

Synthesis and Characterization of the Core–Shell Nanoparticle. The ZnFe2O4 magnetic core with mSi shell nanostructure was prepared and characterized according to the protocol previously reported by our and other groups.16–23 DOX Loading and Release Kinetics from MCNP. Prior to DOX loading, the MCNPs were postgrafted with trihydroxysilylpropyl methylphosphonate (THMP) to create phosphonate (−PO3−)-modified MCNPs, using a postgrafting method that was adopted from a previous report.24 After functionalization with −PO3−, the MCNPs were dispersed in an aqueous solution of DOX such that the final concentration of DOX and nanoparticle was 1 mg/mL. The solution was then stirred overnight for DOX loading. Next, branched polyethyleneimine (PEI) (Mw = 10 000 kDa) was added such that the final PEI concentration was 10 mg/mL along with NaCl solution at the final concentration of 1 mM. This molecular weight and structure of PEI were chosen based on previous reports.25 The solution was stirred for at least half an hour and then purified by centrifugation at 10 000 rpm for 10 min. Purification was performed twice; then, the
DOX-loaded MCNPs (MCNP-DOXs) were dispersed in Dulbecco’s phosphate-buffered saline (DPBS) and used immediately. The loading and encapsulation efficiency are calculated based on the equations previously reported.25 To study the release kinetics, MCNP-DOXs (20 mg) were incubated in 20 mL of DPBS (pH 7.4) under stirring. At different time points, a portion of the solution (1 mL) was collected for centrifugation. The absorption of the supernatant was determined by a standard curve.27 The DOX content in the solution was determined by a standard curve.27

Preparing MCNP Constructs for Tumor Targeting. The PEI-g-PEG-iRGD conjugates were synthesized via a two-step reaction as described previously (Scheme S1).29,30 Then, the as-prepared MCNP-DOX/miRNA constructs were coated with the PEI-g-PEG-iRGD conjugates to obtain the tumor-targeting MCNP-DOX/miRNA/iRGD construct.

Transfection of Cell Lines with MCNP Constructs. Breast cancer cells (MDA-MB-231 and MCF-7 obtained from ATCC, VA) were seeded into each well of a 12-well plate to attain 80% confluency (30 000 cells in a volume of 500 μL) in growth medium [Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin]. After incubation for 24 h, the desired amount of the MCNP construct was mixed with reduced serum media, Opti-MEM (Life Technologies, MA), and added to each well. Subsequently, the cell culture plates were subject to magnetofection on a Nd−Fe−B magnet (OZ Biosciences, France) for 10 min, as optimized from previous report.19 The culture plates were then removed from the magnet and incubated for 5 h. Afterward, the transfected cells were washed with DPBS, followed by replacing with fresh growth medium.

Cell Viability Assays. The percentage of viable cells was determined 48 h after transfection by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. The emitted fluorescence signal was collected at 590 nm with 560 nm excitation. All measurements were repeated in triplicate and normalized to the nontreated condition.

Gene Expression Analysis. The total RNA was isolated 48 h after initial transfection using TRIzol Reagent (Life Technologies, MA). The conversion of total RNA to cDNA was accomplished using SuperScript III First-Strand Synthesis System (Life Technologies, MA). The mRNA expression level of genes of interest was analyzed by quantitative PCR (qPCR) and reported in fold change values relative to control as described previously.22,23 The standard cycling conditions were used for all reactions with a melting temperature of 60 °C. Primers are listed in Table S1. All primers were obtained from the PrimerBank.31−33

Animal Studies. Six week-old BALB/c nude mice were purchased from RaonBio (Yongin-si, Gyeonggi-do, Republic of Korea). All

Figure 1. Synthesis and characterization of the multifunctional MCNPs for codelivery of miRNA and anticancer drugs. (a) HR-TEM image of MCNPs (scale bar = 50 nm) composed of a highly magnetic zinc-doped iron oxide nanoparticle (ZnFe2O4) core and a biocompatible mSi shell. (b) Schematic illustration depicting layer-by-layer assembly of the multifunctional MCNP construct for codelivery of miRNA and DOX: (i) phosphate (PO4)3−-functionalized MCNP; (ii) DOX-loaded MCNPs (MCNP-DOXs); (iii) PEI-coated MCNP-DOX construct (MCNP-DOX/PEI); (iv) Let-7a-complexed MCNP-DOX/PEI (MCNP-DOX/Let-7a); and (v) PEI-g-PEG-iRGD-coated MCNP-DOX/Let-7a construct (MCNP-DOX/Let-7a/iRGD). (c) In vitro DOX release kinetics of DOX-loaded MCNPs (MCNP-DOXs) in PBS (pH 7.4). (d) miRNA loading efficiency of MCNPs at different concentrations determined by quantification assay using PicoGreen dye (miRNA concentration = 100 nM). (e) Stepwise layer-by-layer process of the MCNP constructs was confirmed by tracking changes in the zeta potential. All of the measurements were performed in triplicate (n = 3).
animals were acclimated at least 48 h prior to experiment and maintained according to the guidelines published by the National Institute of Health (NIH). The animal facility was kept under 12 h light/dark cycles at room temperature 21 ± 2 °C with 30–40% humidity. MDA-MB-231 cells (5.0 × 10^5) were mixed with matrigel (BD Biosciences, CA) and were transplanted in both flanks or shoulders via subcutaneous (SC) injection. Treatments of fl dislocation under anesthesia and measured using IVIS. The images, the tumor tissues and other organs (lung, heart, liver, kidney, and spleen) of all of the animals were extracted after cervical dislocation under anesthesia and measured using IVIS. The fluorescence images were processed with commercial software (Living Image software for IVIS spectrum/200, ver. 4.1, Waltham, MA).

MRI Experiment. The magnetic resonance images were acquired under anesthesia on a 4.7 T MRI scanner with the following parameters: field of view = 5 × 3 cm², matrix size = 256 × 256, slice thickness = 1 mm, echo time (TE) = 10 ms, and repetition time (TR) = 350 ms.

RESULTS AND DISCUSSION

Design and Synthesis of the MCNP-Based Codelivery of miRNA and Anticancer Drug. To deliver let-7a and DOX simultaneously, we first synthesized multifunctional MCNPs with a ZnFe₂O₄ magnetic nanoparticle core and a biocompatible mSi shell. A ZnFe₂O₄ core was chosen as it has previously been reported to have a significantly higher saturation magnetization as well as relaxation for improving MRI contrast when compared to conventional Fe₂O₃ or Fe₃O₄ magnetic nanoparticles. High-resolution transmission electron microscopy (HR-TEM) revealed the average diameter of the as-synthesized MCNPs, which was 93.88 ± 7.40 nm with a 11.88 ± 2.03 nm core and a 38.45 ± 3.44 nm thick mSi shell (Figure 1a). Moreover, the ZnFe₂O₄ cores exhibited a monocrystalline structure with a lattice fringe of 4.8 Å (Figure S1a), which corresponds to the (111) plane of the ZnFe₂O₄ spinel. Following further modification of the MCNPs, it was confirmed that the cetrimonium bromide (CTAB) template had been extracted from the 3 nm-sized pore of the mSi shell via Fourier transform infrared spectroscopy (FTIR) analysis (Figure S1b).

To efficiently deliver anticancer drugs, DOX was loaded in the pores of the mSi shell of the MCNPs (Figure 1b). To this end, the pores were first functionalized with phosphate (−PO₃⁻) groups using the postgrafting method from a previously described protocol that was modified by our group. Briefly, the as-synthesized MCNPs were subjected to postgrafting of THMP. To characterize surface functionalization with THMP, the zeta potential of the MCNPs was measured in different pH environments (Figure S1c).

The increase in the negative surface potential of the phosphate-modified MCNP compared to the nonmodified MCNPs confirmed successful modification. To upload DOX onto MCNPs, the phosphate-modified MCNPs were added to the DOX solution (1 mg/mL) and incubated overnight under stirring. The mixture was then centrifuged to isolate the DOX-loaded MCNPs (MCNP-DOXs). The DOX loading efficiency of the phosphate-modified MCNP was found to be 12.1% with an encapsulation efficiency of 48.7%, which is significantly higher than nonmodified MCNPs (loading efficiency = 2.1%, encapsulation efficiency = 8.4%). Moreover, the release profile of the MCNP-DOXs was determined in PBS at pH 7.4, showing a cumulative release of 49% (Figure 1c), which agrees with previous reports. Prior to utilizing the as-synthesized MCNPs for miRNA delivery, a PEI layer was introduced to the MCNP surface via electrostatic interactions between the opposite charges. As a result, the positively charged surface of the PEI-coated MCNPs will permit complexation of the MCNPs with miRNA via layer-by-layer assembly. It was found that the hydrodynamic size of the PEI-coated MCNPs increased slightly to 99.75 ± 36.83 nm (polydispersity index (PDI) = 0.177) as measured by DLS. On the other hand, a significant change in zeta potential was observed (+56.90 ± 1.27 mV), which confirmed the successful adsorption of PEI on the MCNP surface (Figure S1d). It is known that the toxicity of PEI as a gene delivery material is directly linked to its structure and molecular weight. Therefore, to mitigate this cytotoxicity while maintaining a high transfection efficiency, we selected 10 kDa branched PEI, which has been reported to have good biocompatibility.

It was found that our PEI-coated MCNPs were nontoxic to breast cancer cells up to 200 μg/mL, with 100 μg/mL resulting in over 95% cell viability (Figure S1e). To load miRNAs onto our MCNPs, we utilized a layer-by-layer process (Figure 1b). The positively-charged MCNPs (PEI-coated) were complexed with the negatively-charged miRNA molecules via electrostatic interaction to yield miRNA-complexed MCNP constructs (MCNP/miRNA). To assess the miRNA loading capacity of the MCNPs, a fixed concentration of miRNA (100 nM) was mixed with different concentrations of MCNPs to form MCNP/miRNA constructs. Subsequently, the unbound miRNA left in the supernatant was determined using PicoGreen dye to identify the concentration of MCNPs on which the entire miRNA can fully be adsorbed. We found that 100 nM of miRNA could fully complex with 100 μg/mL MCNP (Figure 1d), which is in the nontoxic range of our MCNPs. Next, we observed that the size of the MCNP/miRNA constructs increased to a final diameter of 107 ± 22.35 nm (PDI = 0.433) and had a net negative zeta potential of −33.6 ± 8.62 mV (Figure S1d). Lastly, the MCNP/miRNA constructs were coated with an outer layer of PEI to provide a net positive surface charge to not only facilitate cellular uptake and endosomal escape based on the proton sponge effect but also allow modification with tumor-targeting/penetrating moieties, that is iRGD peptide, via facile bioconjugation of the amine groups on the surface of the PEI. The progression of layer-by-layer assembly on the MCNPs was characterized by tracking the surface charge potential after each step of layer-by-layer assembly and is summarized in Figure 1e. The layer-by-layer construct exhibited good stability in deionized water and cell culture media (10% FBS in DMEM) over the period of 5 days, which was sufficient for localization at the tumor location after the injection into the body (Figure S2).

Improving Cellular Uptake and Anticancer Efficacy Using MCNP-DOX/miRNA Codelivery. To assess the efficiency of nanoparticle cellular uptake and the ability to simultaneously deliver miRNA and anticancer drug, we performed fluorescence imaging analysis on MDA-MB-231 cells that were transfected with DOX-loaded and miRNA-complexed MCNP constructs (MCNP-DOX/miRNA). Specifically, DOX and Cy3 dye-labeled miRNA were loaded onto the
MCNPs, and the delivery process was enhanced by magnetofection to facilitate rapid accumulation of MCNP-DOX/miRNA constructs onto the cell membrane. After 24 h, we found that the constructs were efficiently uptaken by the cells as evidenced by the presence of intracellular fluorescent signals from the Cy3 dye-labeled miRNA (green) and DOX (red) (Figure 2a, b).

To systematically evaluate the anticancer efficacy of our combined therapeutics, we first delivered MCNP-DOXs (i.e., DOX alone without miRNA) into MDA-MB-231 cells. The treatment of MDA-MB-231 cells with MCNP-DOXs resulted in a clear decrease of cell viability in a dose-dependent manner, wherein 100 μg/mL MCNP-DOXs induced cell apoptosis (∼80%) (Figure 2c). Although DOX treatment activates caspase-3-mediated apoptosis, it can also lead to the upregulation of ABCG2 (drug efflux pump) and BRCA1/BRCA2 (DNA repair mechanism) expression, which was confirmed by our qPCR measurements (Figures 2d and S3) and the literature.44,45 This suggests that there is significant room to improve the anticancer efficacy of DOX treatment on breast cancer cells by simultaneously inhibiting these pathways using miRNA replacement therapy.

Let-7a has been widely explored for its role as a tumor suppressor, targeting many gene transcripts involved in cell survival (PI3K via IGFR1),46,47 proliferation (RAS, HMGA2),48,49 and DNA repair (BRCA1, BRCA2).22,50 For breast cancer, previous studies have shown that let-7 primarily acts to inhibit proliferation and self-renewal through the downregulation of HRAS and HMGA2.51,52 As such, we delivered MCNP/Let-7a constructs (i.e., let-7a alone without DOX) to MDA-MB-231 cells to evaluate its therapeutic potential. We found that let-7a alone did not cause any significant cytotoxic effect to the cells after 48 h of treatment (Figure S4a). However, using qPCR, we confirmed that let-7a did act primarily through the downregulation of HRAS and HMGA2, whereby these genes were downregulated by over 60% (Figure S4b). Furthermore, the gene targets (ABCG2, BRCA1, and BRCA2) associated with chemoresistance were downregulated to a comparable extent in MDA-MB-231 cells (Figures 2d and S4b). As such, this suggested that our MCNPs were able to deliver miRNA intracellularly and that codelivery of let-7a with DNA-damaging agents such as DOX could potentially induce a synergistic effect via suppression of chemoresistance-related genes.44

To test our hypothesis, we exploited the ability of our MCNPs to simultaneously deliver DOX and let-7a to MDA-MB-231 cells using the MCNP-DOX/Let-7a constructs. The cell viability was then assayed 48 h after initial transfection. As expected, we observed a dose-dependent decrease in MDA-MB-231 cell viability with 100 μg/mL MCNP-DOX/Let-7a by over 90% (Figure 2c), which is significantly greater than either treatment modality alone (p < 0.001). To investigate the underlying mechanism of this synergy, qPCR was performed for MDA-MB-231 cells that had been exposed to the combination therapy. It was determined that the combination of DOX and let-7a resulted in significant downregulation of chemoresistance genes, specifically, drug efflux pump (e.g., ABCG2) and DNA repair mechanisms (e.g., BRCA1 and BRCA2), as well as the other let-7a targets (Figures 2d and S5). This suggests that the MDA-MB-231 cells were sensitized to DOX via an increase in intracellular DOX accumulation as well as DOX-induced DNA damage, which led to higher levels of apoptosis induction (Figure 2e).

Breast Tumor-Targeted Drug Delivery of iRGD-Based MCNP Constructs. Prior to determining the in vivo therapeutic efficacy of our tumor-targeted MCNP-based combination therapy, we decorated the outer PEI layer of our MCNP constructs with a combination of polyethylene...
glycol (PEG) and iRGD, namely, PEI-g-PEG-iRGD (Scheme S1), to form MCNP/iRGD constructs. In particular, PEG was selected as its function as a stealth polymer that suppresses nonspecific interactions with the body [e.g., decreased interactions with blood components (opsonization) that activate the complement system] and is endowed with either a slightly negative or slightly positive charge to minimize overall self–self and self–nonself interactions. To impart tumor-targeting modalities, we used iRGD, which is a peptide that has unique cell targeting and tissue-penetrating properties that binds to $\alpha_v\beta_3$ integrins. These integrins are commonly overexpressed in the tumor endothelium, including in breast cancers. Moreover, overexpression of $\alpha_v\beta_3$ receptor is found to be higher in malignant cancer cells that are prone to aggressive proliferation and metastasis compared to nonmalignant cancer.

To test our MCNP/iRGD, we labeled the construct with FITC via amine-isothiocyanate covalent conjugation. Following this, the FITC-labeled MCNP/iRGD constructs were delivered to two breast cancer cell lines in vitro: MCF-7 cells, which have previously been shown to have low integrin levels, and MDA-MB-231 cells, which are much more aggressive/invasive and highly express integrins. By visualizing FITC using fluorescence microscopy, it was observed that the FITC-labeled MCNP/iRGD constructs were efficiently delivered into MDA-MB-231 cells (90% delivery efficiency), whereas a lower amount was delivered into the MCF-7 cells (30% delivery efficiency) (Figure 3a,b), which was also confirmed by the literature. The fluorescence quantification showed that significantly higher signals were obtained from MDA-MB-231 cells (105.3 ± 6.7 a.u.) when compared to those from MCF-7 cells (33.9 ± 3.1 a.u.) (Figure 3c).

Next, we examined the tumor-targeted delivery of the MCNP/iRGD constructs in vivo. For this purpose, two tumors were generated in each BALB/c nude mouse via subcutaneous injections of MDA-MB-231 cells into both flanks. FITC-labeled MCNP/iRGD constructs were used, whereas FITC-labeled MCNPs were designated as the control. In this case, the FITC-labeled, MCNP/iRGD and control MCNPs were injected via intravenous injection (100 μL of 1 mg/kg). Images were taken 24 h post injection using an IVIS to monitor fluorescence as well as MRI contrast ability of the ZnFe$_2$O$_4$ magnetic core. Evidently, only the MCNP/iRGD constructs localized at the sites of the tumors as confirmed using fluorescence imaging and MRI (Figure 3d,e). To confirm biodistribution, the tumors and other organs were extracted after the animals were euthanized for ex vivo fluorescence imaging (Figure 3f). It was determined that the FITC-labeled MCNP/iRGD constructs primarily accumulate in the tumors. Furthermore, we can utilize the magnetic properties to improve the target specificity in the particle delivery by using the magnetic targeting method.

In Vivo Anticancer Efficacy of MCNP-Based Combined miRNA and DOX Therapy. On the basis of these results, we sought to determine the therapeutic efficacy of our MCNP platform. The MDA-MB-231 xenografted nude mice were treated with MCNP-DOX/Let-7a/iRGD constructs (combined DOX and let-7a condition) every 3 days for 5 weeks. To directly compare the four different conditions in a single system, a mouse model was generated, wherein each mouse bears four tumor xenografts at both flanks and shoulders (Figure 4a). The particle dose to each animal was 5 mg/kg (DOX, 0.6 mg/kg; miRNA, 129.3 μg/kg) for each injection. The PBS (nontreated condition) and single modality conditions (MCNP-DOXs, DOX alone condition; MCNP/Let-7a, let-7a alone condition) were used as controls. Following euthanasia of the mice after 5 weeks, treatment with MCNP-DOX/Let-7a/iRGD constructs showed a significantly higher rate of tumor inhibition (85% decrease in tumor volume), compared to DOX alone (17% decrease in tumor volume) or let-7a alone (61% decrease in tumor volume) (Figure 4b). We did not observe any decrease in body weight.
Figure 4. In vivo anticancer efficacy of multifunctional MCNP-based combined miRNA and DOX therapy. (a) Images of tumor-bearing nude mice and dissected tumors from xenografts treated with four different conditions: (1) PBS (control); (2) DOX-loaded MCNP (MCNP-DOX); (3) let-7a-complexed MCNP (MCNP/Let-7a); and (4) DOX-loaded and let-7a-complexed MCNP (MCNP-DOX/Let-7a). The four different treatment conditions were directly injected into the MDA-MB-231 tumors of mice every 3 days for 5 weeks. Each mouse received a particle dose of 5 mg/kg (DOX, 0.6 mg/kg; miRNA, 129.3 μg/kg) for each injection. (b) Tumor growth tracking in mice treated with the four different treatment conditions. Tumor volumes (cm³) were assessed with calipers and are shown as means (n = 10 mice per group; *p < 0.0001). (c) Weight of the tumor tissues after combined let-7a and DOX treatment showed a significant decrease compared to the single treatment modality of either DOX or let-7a alone. The weight of MDA-MB-231 tumor tissues extracted from nude mice is shown as means ± standard deviation (n = 10; *p < 0.0001). (d) RT-qPCR analysis of tumor tissues showed the synergetic downregulation of the key targets involved in chemoresistance mechanisms (drug efflux and DNA repair) (n = 10; *p < 0.05, **p < 0.001).

In mice receiving injections. The MDA-MB-231 tumors were extracted and weighed after the whole course of treatment and showed that the combination therapy significantly reduced tumor weight when compared to nontreated and treated with single modality treatments (Figure 4c). These results demonstrate that let-7a can be used to enhance the anticancer effects of DOX in an in vivo xenograft model of breast cancer.

From qPCR analysis, we speculate that this unique combination (e.g., let-7a with DOX) acts primarily through the downregulation of drug efflux pumps, DNA repair mechanisms, and inhibition of tumor proliferation and prosurvival pathways. In particular, let-7a codelivery can simultaneously downregulate multiple genes, including members of the RAS family, HMGA2, ABCG2, and BRCA2, to induce caspase-3-mediated apoptosis (Figures 4d and S6), which is in agreement with previous reports.14,15 As a result, MCNP-based codelivery of miRNA was able to sensitize triple-negative breast cancer cells to the treatment of DOX, which released from the pores of the mSi shell of our MCNPs.

Although therapeutically promising, in vivo toxicity and clearance of the core—shell magnetic mSi nanoparticles remain a concern.59 Although magnetic nanoparticles and silica materials have been approved by the US Food and Drug Administration (FDA) for clinical use, it should not be assumed that magnetic-mSi core—shell structures have an equivalent safety profile without further study.60,61 One area of concern is the size of the nanoparticles, which can limit clearance. This results in the accumulation of these particles, which over the long-term may cause damage to tissues and organs.62 To overcome this issue, one strategy is to exploit biodegradable silica, which can be engineered to degrade fully under biological conditions.63 Because nanoparticles possess highly versatile surfaces and interior chemistries, as the exact parameters that affect the clearance of nanoparticles from the body are further elucidated, it will become significantly easier to construct nanocarriers with favorable pharmacological properties, thus enhancing the clinical potential of nanoplatforms.

CONCLUSIONS

In this work, we have successfully demonstrated that the combination of let-7a and DOX chemotherapy can act as a potent therapy for cancer by overcoming chemoresistance. In particular, we have developed MCNPs consisting of a highly magnetic core and a biocompatible mSi shell, wherein DOX was loaded in the pores of the mSi shell, whereas let-7a was complexed on the surface through electrostatic interaction, resulting in the simultaneous delivery of these orthogonal modalities. We found that the treatment of triple-negative breast cancer cells (e.g., MDA-MB-231) with our combination therapy resulted in a synergistic decrease in cell viability, wherein 100 μg/mL of this combination therapy was able to decrease cell viability by over 90% in vitro and decreased tumor volume by 85% from in vivo model, which is significantly greater than either treatment modality alone.

Previous studies have developed similar platforms, where siRNAs targeting multidrug resistance genes (e.g., multidrug resistance-associated protein-1, MRPl) or prosurvival pathways (e.g., B cell lymphoma 2, BCL2) can help overcome chemoresistance.64,65,66 For instance, Meng et al. demonstrated that the delivery of siRNA against P-glycoprotein protein, a drug efflux transporter, can enhance treatment of drug-resistant KB-V1 cells in an additive or synergistic fashion in vitro.65 This platform was also found to function in vivo to synergistically inhibit tumor growth.66 Although promising, it is a well-known fact that cancer cells typically utilize more than one mechanism to circumvent chemotherapy-induced cytotoxicity, and as such, miRNA therapeutics having multtargets are required to treat chemoresistant cancers more effectively.

In conclusion, we have demonstrated an advanced MCNP-based platform that can be used to simultaneously deliver miRNA and chemotherapeutic agents to malignant tumors in a target-specific manner. In particular, we provided a comprehensive report on the combined use of let-7a and DOX chemotherapy. We have also further demonstrated the additional multifunctionality offered by the use of MCNPs, where MRI provides a mean to monitor particle delivery. Furthermore, this platform can potentially be combined with magnetic hyperthermia-based therapy, which can act in concert with let-7a to further sensitize cells to chemotherapy.22 Overall, this result provides proof-of-concept for the delivery of miRNA/drug combinations using combinatorial nanocarriers to overcome chemoresistance.
Heterogeneity: A Looking Glass for Cancer?

Collichio, F.; Ollila, D. W.; Sartor, C. I.; Graham, M. L.; Perou, C. M.

Local and Regional Relapse.

Cancer.

C. The work was partially supported by the NIH R01 (R01DC016612-01), the NIH R21 (R21AR071101-01), the NSF (CHE-1429062), the ACS (PRF #55869-ND10), the NJ Commission on Spinal Cord Research (CSCR16ERG019), and the National Research Foundation of Korea (NRF) [2013K1A4A3055268 and 2016R1A6A1A03012845, funded by the Ministry of Science, ICT and Future Planning (MSIP) and the Ministry of Education of Korea].

ACKNOWLEDGMENTS

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.8b09086.

Characterization of MCNPs (TEM images of the lattice structure, FTIR spectra of CTAB-removed mSi, size and zeta potential during the progression of layer-by-layer assembly on MCNPs, confirmation of phosphonate functionalization on mSi, and cytotoxicity of MCNPs); stability of MCNPs; qPCR analysis of MDA-MB-231 cells and xenografts; synthetic scheme of iRGD conjugation; and primer sequences for qPCR (PDF)

REFERENCES

(20) Shah, B. P.; Pasquale, N.; Ge, G.; Tan, T.; Ma, J.; Lee, K.-B. Core-Shell Nanoparticle-Based Peptide Therapeutics and Combined Hyperthermia for Enhanced Cancer Cell Apoptosis. ACS Nano 2014, 8, 9379−9387.

(30) Zhan, C.; Qian, J.; Feng, L.; Zhong, G.; Zhu, J.; Lu, W. Cyclic RGD-poly(ethylene glycol)-polyethyleneimine is more suitable for

